

Marco Larcher
SPF - Institut für Solartechnik
University of Applied Sciences Rapperswil (HSR)

SPF Test Rig: HoTT200

Circuit specifications:

- Water as fluid (water-glycol mixture possible)
- Mass flow range 100 kg/h up to 1500 kg/h, Two coriolis mass flow meters, accuracy ± 0.1%

Heating power: 10kW

Cooling power: 20kW (water & air cooling)

Efficiency curve

Why heat loss measurement?

Efficiency of a collector is a combination of optical efficiency and thermal losses

- \dot{Q}_{loss} heat losses of the collector \approx heat losses of the receiver
- To measure the hole efficiency curve of concentrating collector we need some clear days without clouds (minimum 3-5 days)
- Our idea to reduce the measurement duration (outdoor) is:
 - Determine the optical efficiency at outdoor environment (at one sunny day!)
 - Go into lab and measure the heat losses (independent of weather) ← focus
 - Combine the two measurement for the efficiency curve of the collector

Thermal loss measurements at the SPF

Test collector/receiver:

- Length 4m, outer diameter of absorber 28mm
- Not evacuated, with a selective coating

Measurements:

- Temperature drop over receiver (T_{in}, T_{out})
- \blacksquare Ambient temperature (T_{amb})
- Massflow (\dot{m})

■ Calculation of the thermal loss coefficient $U_{0,abs}$

$$U_{0,abs} = \frac{\dot{Q}_{loss}}{A_{abs} \cdot \Delta T_{amb}} = \frac{\dot{m} \cdot c_p \cdot (T_{in} - T_{out})}{A_{abs} \cdot \left(\frac{T_{in} + T_{out}}{2} - T_{amb}\right)}$$

Thermal losses results: 3 different flow rates

Thermal losses: measurement / simulation

heat loss simulation

heat loss measurement

To the Conclusion

- Thermal loss measurement with flow trough absorber is...
 - ...close to the field reality
 - Flow conditions are measureable → possibility for heat transfer optimization

In ...not easy to measure for evacuated receiver. The better the receiver the harder to measure. (small $\Delta T = T_{in} - T_{out}$)

- However: Fast indicator for a first performance estimation
 → good (at least) for collector or receiver development
- Further investigations need to be done to combine indoor and outdoor measurements for the efficiency curve

